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Abstract. The 16-vertex model of ferroelectrics is shown to contain some special 
cases in which simple relationships among the vertex weights allow the partition 
function to be calculated by elementary methods. These models are essentially 
one-dimensional king chains except in a limiting case in which a rudimentary sort of 
phase transition may occur. 

The transfer matrix for vertical bonds in the 16-vertex model can be written (Lieb and 
Wu 1972) in ternis of spin operators at N sites as 

T =  Tr,;I{( U 1  w12 ) c r j + o j - + (  w3 w14 ) o i - o j + + (  w9 w5 )oj++(U1lwg)oi-)  

(1) 
3 = 1  w1ow4 w16 w7 w15 w 6  w13 

N 

= T r , n  (Ao,+o,- + Boj-aj+ + Coj+ + D o j - )  
j=1 

where the wi  (i = 1, . . ., 16) are weights (positive real numbers) for the vertices of 
figure 1 and Tr, means the trace taken over the products of 2 x 2 matrices A ,  B, C,  D. 

-f-++++-i--t-.t. 
[ I )  ( 2 )  (31 ( 4 )  (51 (61 (71 (8) 

(9) (IO) (11) (12) (13) (14) (15) .I61 

Figure 1. The 16 vertex configurations. 

From an algebraic point of view T i s  very much simplified if the matrices A ,  B,  C ,  D 
can be put simultaneously into upper (or lower) triangular form. A direct examination 
shows that this can be done by a (unitary) similarity transformation provided that 
either: (a) w t  # 0 for i = 1 , .  . . , 16 and there exists a real number z such that the 
equations 

wloz2+(w4-w1)z-w12 = 0 
w 1 ~ z 2 + ( w , - w ~ ) z - w ~ 4  = 0 

w ~ z 2 + ( w ~ 5 - U g ) Z - w 5  = 0 

L140 
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hold simultaneously; or (b) either 

w10 = 
or 

= w7 = wg = 0 

U12 = w14 = wg = w$j = 0. (3) 
(These can be regarded as limiting cases of (2) but are kept separate for the discussion 
below.) 

When A ,  B, C, D satisfy conditions (a) or (b) the eigenvalues of any reasonable 
functionJ = f(A, B, C, D )  aref(A,(A), Aj(B), A,(C), A,(D)) where the A are eigenvalues 
of the four matrices in (1); in particular we have 

N 

are formed from corresponding eigenvalues of A ,  B, C, D and are repeated N times. 
If the weights w i  satisfy conditions (2) above we may derive the partition function 

by the following argument. All the entries in matrices A ,  B, C, D are real and positive 
so each matrix has two eigenvalues one of which is positive (say A,) and exceeds in 
magnitude the other (A-) which may be positive or negative. The eigenvector cor- 
responding to A, may be taken with all positive entries whereas that of A- must have 
one positive and one negative (the Perron-Frobenius theorem). But as A ,  B, C, D 
can be made simultaneously triangular they have a common eigenvector and the 
(1,l) element of the triangular matrix is the corresponding eigenvalue. It follows that 
in the triangular form the A +  for A ,  B, C, D occupy corresponding positions and like- 
wise the A - .  Thus we may take A,(A), A,(B), A,(C), A,(D) to be of A, type and all the 
A, to be of A- type. A straightforward induction argument now shows that the (i,j)th 
element of any product of El and E, with M factors is less in magnitude than the (i,j)th 
element of ElM and hence that 

Tr,N(T*) = {TrZ(ElkiE,~~Elk~. . .)}# - (Tr,EIJf)N 
all products 

wi th  Z k + Z l = M  

for large N .  As the entries of E, are real and positive its eigenvalue of greatest magni- 
tude is always 

= 3 ( A ~ ( A )  +AI(B)) +*{(hi(A) -Ai(@)' ~AI(C)A~(D))"~ ( 6 )  

(7 )  
If we wish to interpret the vertex weights as Boltzmann weights in terms of a 

vertex energy et and inverse temperature B as w t  = exp( - Be,) the equations (2) cannot 
hold at all temperatures without further restriction. This leads to essentially two 

and the result for the partition function as N ,  M --f 00 is 

2 = Tr2N( TM) - A M N .  
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cases 

(8) 

(9) 

w1 = w4, w2 = w3, w5 = w7, = 

U10 = w12, wll = w13, 09 = w15, w14 = w16 

w1 = w10, w4 = w12, w3 = w16, w2 = w14, 
and 

w7 = w9 3 w5 = w15, = wll ,  wg = w13. 

(From symmetry properties of 2 (Lieb and Wu 1972) there are a few other pairings 
of weights which lead to the same thermodynamics as these two.) In both cases 
(8) and (9) the eigenvalues A,, and hence A of (6), become analytic functions of p 
so there is here no possibility of a phase transition. If the states of the four bonds 
at  a vertex are labelled clockwise round the vertex by classical ‘spin’ variables sl, s2, s3, 
s4 (each si  = ? 1) the method of Suzuki and Fisher (1971) gives the equivalent Ising 
models as follows. 

In case (9) the partial Ising haniiltonian for ‘spins’ round vertex r becomes 

Hr -Jo - J ~ S ~ - J ~ S ~ - J ~ S ~ - J ~ S ~ S Z - J ~ S ~ S ~ - J ~ S ~ S ~ - J ~ S ~ S ~ S ~  (IO) 

with eight independent parameters J .  By drawing the Ising lattice it is easy to see that 
(10) corresponds to a set of decorated one-dimensional Ising chains. The decoration 
spin s, can be summed out in the usual way (Green and Hurst 1964) so that the Ising 
equivalent of (9) is basically a one-dimensional chain with nearest-neighbour inter- 
actions and a magnetic field. 

In case (8) the Suzuki-Fisher method leads to a partial hamiltonian at the rth 
vertex. 

where again the eight J are independent. In (11) the variables s1 and s3 occur only 
in the combination ~ 1 ~ 3 ;  the introduction of t = s1s3 as a new independent random 
variable immediately reduces (1 1) to (10) so that the discussion above again applies. 

If the weights wi satisfy (3) the argument is no longer valid because the Perron- 
Frobenius theorem does not apply in the form used above. We may however go back 
to equation (4) which now holds with 

H, = - JO - J l S 2  - J2S4 - J3S1S3 - J4s2S4 - JgS1S233 - JgS1S3S4 - J7SiS2S3S4( 1 1) 

Since all the elements of E, and E2 are positive we have in the notation used earlier 
(extended so that A,(T) mean the largest and smallest eigenvalues of the 2 N x 2 ”  
matrix T) 

A+(El) > lA-(El)l, h+(Tl) = A+N(E1) (13) 

(14) 

and corresponding results for T2. Suppose now that A+(&) > A+(E2). By using the 
minimax principle (Bellman 1960) we can write 

L(T1) = A-N(E1) 
A - ( 7‘1) = A + N-l(El)A - (El) 

if A-(E,) 3 0 
if A-(&) < 0 

A+(T1)+A-(T2) = max(x, T,x)+min(x, T2x) 
< max(x,( Tl + T2)x) = A + (  Tl + T,) 
< max(x, Tlx) + max(x, T2x) 

= A+(TJ+A+(T2). 
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Here the max and min are taken over all normalized 2 N  dimensional vectors x.  On 
inserting (1 3) and (1 4) into (1 5 )  and taking N to be large there results immediately 

If one of A+(&), A+(,!?,) remains greater than the other as the weights in (12) vary with 
temperature the thermodynamic behaviour is again that of (6) and (7). However, 
in the present case we have the additional possibility that as temperature varies 
A+@,) and h+(E2)  may cross one or more times. For example, the case with vertex 
energies e,  = e3 = 1, e2 = e4 = 2, eg = e,, = 8, e13 = e15 = 4 has a phase transition 
at ,B - 1/10. Since A+(&) and A+(,!?,) are two distinct analytic functions of temperature 
each such crossing point constitutes a first-order phase transition. The lattice inter- 
pretation of the transition can be seen at once from figure 1 .  The effective elimination 
of vertices 5,  6, 7, 8, 10, 12, 14, 1 6  from the problem means that on a given row all 
horizontal arrows point in the same direction; the partial transfer matrices T, and 
T2 correspond to right- and left-pointing rows respectively. For a large lattice the 
‘average’ configuration has all rows pointing in the same direction and the reversal 
of this universal direction constitutes the phase transition. Between transitions the 
partition function behaves again like (7). The columns of vertical bonds behave in- 
dependently one from another and the 2 x 2  matrices E, and E2 play the role of 
transfer matrices along the columns. Thus the thermodynamics and correlations 
along a column are again those of a one-dimensional Ising chain. 
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